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Abstract: The application of several different evaluation criteria to the performance of pattern classifiers used for chemical 
pattern recognition indicates the need for caution in evaluating and comparing classification methods. Important consider­
ations include the distinction between recognition and prediction performance, the similarity of test data sets, the distribution 
of compounds within the various categories in these test sets, and the distinction between binary and multicategory classifica­
tion. It is shown that the class conditional probabilities and a proposed figure of merit (M) are well suited for selection of classi­
fiers with balanced high performance on class and nonclass members. 

Pattern recognition has been advocated as a generalized 
approach to the solution of data analysis problems in experi­
mental chemistry.2'3 In general, the aim of pattern recognition 
systems in chemistry is to detect or predict properties of com­
pounds, elements, or mixtures of chemical interest based on 
observation of some previously defined and different set of 
properties or measurements. 

Chemical pattern recognition studies have tended to focus 
on the classification of compounds into functional group classes 
or activity classes based on observation of spectral features, 
drawn primarily from mass spectra,4-10 infrared,1 M 6 or NMR 
spectra. 17~22 These studies have employed classifiers developed 
in different ways, including linear discriminant functions,4 

minimum distance measures,18 and adaptive learning net­
works.9,10 It is natural, confronted with a growing body of 
methods and results, that one should want to compare these 
methods in order to select the best method for a particular 
classification task and, further, that one should wish to have 
some measure of the anticipated level of successful perfor­
mance of the chosen classifier in laboratory application. 

Uhr has pointed out the paucity of controlled efforts to 
compare various pattern classifiers, particularly in regard to 
the lack of testing with similar sets of test data.23 Since any 
selected set of test data might not reflect the characteristics 
of the "universe" of patterns to which a classifier will be applied 
in actual use, a serious comparative study ought to employ as 
large as possible a test data set and should ensure that the test 
sets used are identical or, at least, very similar, for the various 
classifiers being studied. For a classifier being designed for a 
restricted, well-defined set of patterns such as standard-font 
alphabetic characters, this problem is less difficult than for a 
"universe" as diverse as, say, mass spectra of organic com­
pounds. 

Recent theoretical work by Rotter and Varmuza24 suggests 
an efficacious approach to the problem of choosing suitable 
measures of chemical classifier performance. In the present 
work, we present the results of applying various evaluation 
criteria to the performances of four sets of pattern classifiers 
developed and tested with a uniform set of 1252 mass spectra 
drawn from a file of 18 806 mass spectra.25 This study repre­
sents the first attempt to compare mass spectral pattern clas­
sifiers on the basis of so large and so uniform a data set. We 
also formulate the evaluation criteria of Rotter and Varmuza 
in terms of experimental quantities which are easily tabulated 
during the testing of a pattern classifier. 

Objective Evaluation of Pattern Classifiers 

Rotter and Varmuza have discussed from a theoretical 
viewpoint a variety of possible criteria for the evaluation of 

binary pattern classifiers.24 For ease of reference, we sum­
marize below the probabilities used in their treatment. We 
retain the notation of those authors, in which " 1 " and "2" are 
used to denote the two possible class memberships of a pattern 
in a binary classification problem, and " j " and "n" are used 
to indicate the possible class assignments by the classifier. That 
is, " j " (ja) means the classifier assigns the pattern to class " 1" 
and "n" (nein) denotes assignment of the pattern by the clas­
sifier to class "2". 

Here follow the definitions of the various probabilities as­
sociated with the binary classification problem. 

p( 1) and p(2) are the a priori probabilities of membership 
of patterns in class 1 or class 2 in the population of interest. 
These probabilities thus give the composition of the test pop­
ulation. 

pi]) and p(n) are the probabilities that the classifier in 
question will classify a pattern as belonging to class 1 [p(j)l 
or to class 2 [p(n)]. 

p(j 11) and p(n | 2) are the class conditional probabilities or 
"predictive abilities", in the terminology of Rotter and Var­
muza, of the classifier correctly classifying patterns from class 
1 and patterns from class 2.p(j\ 1) is the probability that pat­
terns belonging to class 1 will be classified correctly and/?(n|2) 
is the probability that patterns belonging to class 2 will be 
classified correctly. 

p(l | j) and p(2\n) are the a posteriori probabilities of 
membership of patterns in class 1 and class 2 following appli­
cation of the classifier. p(l |j) is the probability that a pattern 
actually belongs to class 1 given that the classifier says it does, 
and, similarly, p(21 n) is the probability that a pattern actually 
belongs to class 2 given that the classifier says it does. Proba­
bilities for incorrect assignments are also defined: these are 
/>(l|n)and/?(2|j). 

p( 1 j), /?(2,n), p{ 1 ,n), and p(2,j) are the overall probabilities 
for the four possible circumstances which may exist following 
the application of a binary classifier. p( 1 J) is the joint proba­
bility that a pattern is both a member of class 1 and is classified 
as such by the classifier. Similar definitions apply for the other 
three quantities. 

The probabilities mentioned above are not independent of 
one another, but are interconnected by a number of useful 
relationships. Obviously, 

P(D + p(2) = p(j) + p(n) = 1 (l) 

Further, 

P ( I j ) + p ( l , n ) = p ( l ) (2) 

p{2,]) + p(2,n) = p{2) (3) 
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Also, 

P(U))+p{2 j)=pQ) (4) 

p ( l , n ) + p ( 2 , n ) = p ( n ) (5) 

/7(1J) =p(i|j)pG) = P 0 ' I O P ( D (6) 

p ( 2 , n ) = p ( 2 | n ) p ( n ) = p ( n | 2 ) p ( 2 ) (7) 

p ( l , n ) = p ( l | n ) p ( n ) = p ( n | l ) p ( l ) (8) 

p ( 2 , j ) = p ( 2 | j ) p ( j ) = p ( j | 2 ) p ( 2 ) (9) 

In addition to these probabilities, Rotter and Varmuza 
employ a quantity called the "information gain" of a classifier 
under consideration. The information gain /(A,B) is the dif­
ference between the a priori uncertainty H(A), or entropy,26 

regarding class membership and the residual uncertainty 
H(A I B) following application of the classifier. That is, 

/(A,B) = H(A) - / /(AjB) (10) 

where 

and 

H(A) = -p(\) log 2 p( l ) - p ( 2 ) log2p(2) (11) 

/ / ( A | B ) = p ( j ) / / ( A | j ) + p ( n ) / / ( A | n ) (12) 

/ / (A | j ) = - p ( l | j ) l o g 2 p ( l | j ) - p ( 2 | j ) l o g 2 p ( 2 | j ) (13) 

/ / (A |n ) = - p ( l | n ) l o g 2 p ( l | n ) - p ( 2 | n ) l o g 2 p ( 2 | n ) (14) 

The use of base 2 logarithms determines the units of these 
uncertainties to be "bits". 

A more compact expression for /(A,B) can be shown to 
be 

/(A1B)= L E Pd.k) log2 - f ^ k 
< = l,2*=j,n P(')p(k) 

(15) 

To apply the foregoing statistical measures to the evaluation 
of an actual classifier, these quantities must be computed from 
tabulations of correct and incorrect responses. We next show 
how all the quantities above can be computed from four ex­
perimental measures which are easily tabulated during the 
testing of a classifier. 

Consider a test population consisting of Nlota\ patterns, of 
which N patterns are in category 1 and /Vtotai

 — N are in cat­
egory 2. Let the number of patterns which the classifier assigns 
to category 1 be /VPred and the number which it correctly as­
signs to category 1 be Ncorr. The four quantities TV, /VPred, Nc°", 
and /Vtotai are sufficient to compute all the relevant probabil­
ities defined previously. 

p(l)=N/NMM (16) 

P(2) = 1 - p ( l ) = (JVtotal - AO/Wtotal ( 1 7 ) 

p(j) = /VPn=d/7Vtolal ( I 8 ) 

/Kn) = 1 - p(j) = (/Vtotai - /VP^)//v t o l a l (19) 

p(j\\) =NC0Tr/N (20) 

P ( I j ) = P G I I)P(I ) = /Vcorr//Vtotal (21) 

P(I Ij) = P ( I J ) A P ( J ) = N ^ / N ^ (22) 

p(l ,n) = P(I ) - p ( l j ) = (N - /Vcorr)//Vtotal (23) 

P(2j) = P(J)-P(I)) = (/VPred - /Vcorr)//Vtotai (24) 

p ( 2 , n ) = p ( 2 ) - p ( 2 , j ) 

_ (/Vtotai - N - /VPred + /Vcorr) 

' P(n) (/Vtotai - N^) ( °> 

, _ p(2,n) _ (/Vtotai - TV - /VPred + /Vcorr) 

'(n|2)-7(2T (N^v (27) 

Thus, the tabulation of N, /VPred, /Vcorr, and /Vlotai permits 
computation of various statistics describing classifier perfor­
mance as well as the information gain /(A,B) when expressed 
in terms of p ( l ) , p(2), p(j), p(n), p ( l j ) , p( l ,n) , p(2,j), and 
P(2,n).27 

Currently, perhaps the most commonly used measure of 
classifier performance in chemical applications is the overall 
"percent correct classifications". In terms of the four tabula­
tions recommended above, this measure is 

% correct classification 

= 100 
/Vcorr + /Vtotai - N - /VPred + N° 

N1 

(28) 
total 

Ntc 

(25) 

The process of evaluating a pattern classifier has two goals. 
First, one wishes to obtain a measure which permits objective 
comparison of various classifiers so that the best classifier can 
be selected for any particular task. Second, one wishes a 
measure which allows the potential user to anticipate the level 
of performance that a particular classifier will yield in actual 
use (i.e., allows interpretation of the predictions made). One 
may ask to what extent a particular measure satisfies these 
requirements and whether the conditions under which the 
measure is determined affect its validity. 

Several variables in the testing process can act to interfere 
with an objective evaluation. If classifiers to be compared are 
tested on very different sets of patterns, one cannot be sure 
whether differences in performance are due to differences in 
difficulty of the classification problems or to inherent differ­
ences in the classifiers. The size and makeup of the data set 
used to test classifiers can influence the usefulness of an eval­
uation; a small test data set is unlikely to be as representative 
of real applications as a large set and even with a large test set, 
the composition of the set can significantly affect the apparent 
performance of a classifier as measured by certain evaluators, 
as we shall show later. The development of a classifier involves 
training with a selected set of patterns and it is naturally ex­
pected that the classifier will perform better in "recognizing" 
the class identities of the training patterns than in "predicting" 
the identities of patterns not encountered in training. Thus, the 
incorporation of recognition data in the evaluation of a clas­
sifier will tend to exaggerate the quality of the classifier's 
performance. 

In the following sections, we report the application of five 
different evaluative measures to collections of pattern classi­
fiers developed in four different ways. The advantages and 
weaknesses of each measure will be discussed. In what follows, 
we shall confine our attention to prediction, as opposed to 
recognition. 

The Evaluators 

Of the probabilities discussed by Rotter and Varmuza, two 
types are potentially most useful as performance evaluators 
for binary classifiers. 

The class conditional probabilitiesp(j 11) and p(n12) mea­
sure the probability that the classifier will classify correctly 
patterns which are drawn from class 1 on the one hand and 
from class 2 on the other. 

The a posteriori probabilitiesp(l |j) andp(2|n) are, on first 
consideration, attractive candidates for performance evalua­
tion. They give the probability that an assignment by the 
classifier is correct; p( l |j) for assignment to class 1 and p(2|n) 
for assignment to class 2. As we shall show, these measures, 

Journal of the American Chemical Society / 98:23 / November 10, 1976 



7141 

although intuitively attractive, must be interpreted with ex­
treme care, as they are highly dependent on the makeup of the 
test data set. 

The overall percent correct prediction, a commonly reported 
statistic, summarizes both of the class conditional probabilities 
p(j\ 1) andp(n12), but is weighted toward the performance of 
the more populous class. Thus, this overall measure can obscure 
certain aspects of a classifier's performance. 

In order to avoid dependence on test set composition, Rotter 
and Varmuza propose that the information gain 7(A,B) be used 
as an objective measure of classifier performance. This 
quantity measures the amount by which the classifier reduces 
the uncertainty regarding class membership and is measured ' 
in bits. Further consideration, however, shows that the com­
position of the test set does indeed impose limits on /(A,B) 
which may not be the same for all classifiers being tested. 
Recall that, as stated in eq 10,7(A,B) is equal to the difference 
in pre- and post-classification entropies (//(A) and H(A | B)). 
The value for /(A,B) is thus zero bits in the event that the 
classifier adds no information; that is, the uncertainty //(A| B) 
after use of the classifier is equal to H(A), the uncertainty prior 
to its use. However, in examining the upper limit on /(A1B), 
we see that the minimum residual uncertainty //(A| B) is zero 
bits, in which case 

/(A,B)max = H(A) (29) 

Thus, the maximum possible information gain for a classifier 
is limited by the initial uncertainty, which depends on the 
composition of the test set employed (see eq 11). Thus, a 
classifier being tested on a data set composed of equal numbers 
of class 1 and class 2 patterns [p(l) = p(2) = 0.5] would have 
a maximum possible information gain of 1 bit, whereas a 
classifier tested on a data set with/?(l) = 0.1 andp(2) = 0.9 
would have a maximum information gain of only 0.5 bit. 
Comparison of two classifiers on such a basis would be mis­
leading. 

The above considerations lead us to propose a figure of merit, 
M, 

M = /(A,B)///(A) (30) 

where M is the information gain relative to the maximum 
possible information gain imposed by the composition of the 
test set. Our results indicate that M, as a measure of classifier 
performance, does not suffer from the defect of being test set 
dependent. 

The Classifiers 

In the present work, we have applied each of the five types 
of evaluator (class conditional probabilities, a posteriori 
probabilities, percent correct prediction, information gain, and 
figure of merit) to a set of 44 classifiers. These classifiers were 
developed to assign organic compounds to functional group 
classes based on their low resolution mass spectra. Functional 
group categories (11) are represented and are listed in Table 
I. Classifiers for the 11 categories were developed in four dif­
ferent ways; the methods are described in detail elsewhere.28'29 

In each case, the classifier set described here is the end product 
of an effort aimed at producing the best classifiers of that 
particular type. 

Three of the four 11 -classifier sets were developed as strictly 
binary classifiers. Set 1 was developed by the linear learning 
machine method, based on error correction feedback;30 the 
resulting weight vector classifiers utilize from 20 to 45 features 
in the patterns to which they are applied. With these few fea­
tures, the patterns in the training sets were not linearly sepa­
rable. Set 2 was developed by the sequential simplex optimi­
zation procedure8'28 using the weight vectors in set 1 as the 
starting point. These classifiers utilize the same numbers of 

Table I. Composition of Data Set from Which Training and Test 
Sets Were Drawn 

Category Number of spectra 

1 C6H5R (R = straight chain) 249 
2 RC(=0)R' (R' may be H) 96 
3ROR' 103 
4ROH 185 
5C6H5OH 84 
6RC(=)OH 51 
7 RSR'(R'may be H) 135 
8RC(=0)OR' 125 
9RNR'R"(R'andR"maybeH) 131 

10RQ=O)NH2 56 
11 RC=N 37 

features as those in set 1. Set 3 was developed by the linear 
learning machine method using more features to improve linear 
separability of the training set patterns. These classifiers em­
ploy 60 features each, which results in linear separability of 
six of the 11 training sets. 

The classifiers comprising set 4 are based on adaptive digital 
learning networks and thus are not simple binary classifiers. 
In the digital learning network (DLN) method, the classifiers 
are templates which are used as a group to effect multicategory 
classification instead of being employed individually as with 
the binary classifiers.9'10 In this work, 128 training compounds 
were used to develop the set of 11 DLN classifiers. Although 
one can still tabulate quantities N, ArPred, and 7Vcorr for each 
of the 11 categories and thus evaluate the multicategory 
classifier as if it were an adjustable binary classifier, certain 
distinctions must be borne in mind. The multicategory classi­
fier assigns each pattern to just one class out of the 11, making 
a single unambiguous (though not necessarily correct) clas­
sification. The same pattern, submitted to an array of 11 binary 
classifiers, might be classified, say, as an ether by one binary 
classifier and as an amine by a different binary classifier. Of 
course, for polyfunctional compounds, assignment to more than 
one category might be appropriate, but the prospect of mis-
classification or ambiguous classification is increased by the 
possibility of assignment to more than one category. Also, the 
collection of binary classifiers is capable of assigning a pattern 
to none of the categories in question, but the DLN multicate­
gory classifier is designed to always make a positive class as­
signment. Thus, assignments by a group of binary classifiers 
are less restricted than those of the DLN classifier, but the 
former are also subject to uncertainties not characteristic of 
the latter. A choice between these two types of classifier might 
depend, in part, on the desired application, and a comparison 
of their performance must be made on some common basis. In 
the present study, by treating the DLN classifier as if it were 
a variable topic binary classifier, we compare its performance 
on each particular topic or category with that of the corre­
sponding binary classifier. Alternatively, one could build a 
multicategory classifier from a parallel array of binary clas­
sifiers31 and compare the resulting multicategory assignments 
with those of the DLN system. 

The Data Set 

The results reported here and are based on a rather larger 
data set than has been employed in most chemical pattern 
recognition studies. From a file of 18 806 mass spectra,25 a set 
of 1252 spectra was selected, distributed among the 11 func­
tional group categories as shown in Table I. The category 
definitions do not overlap, except in the case of categories 1 and 
5 (phenyl compounds and phenols, respectively). With this 
exception, no compound in the data set contains functional 
groups from more than one category, but some of the com-

Wi I kins et al. / Pattern Classifiers for Chemical Applications 



7142 

Table II. Performance Measures for Set 1, Reduced Feature Linear 

Category" Number of features p(\)b % correct pred/100 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

20 
35 
45 
30 
20 
25 
20 
25 
20 
25 
25 

0.14 
0.04 
0.04 
0.08 
0.04 
0.02 
0.05 
0.04 
0.06 
0.02 
0.02 

0.91 
0.88 
0.88 
0.87 
0.87 
0.86 
0.86 
0.83 
0.78 
0.82 
0.94 

Table III. Performance Measures for Set 2, Simplex Weight 

tegory 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

p(\)" 

0.14 
0.04 
0.04 
0.08 
0.04 
0.02 
0.05 
0.04 
0.06 
0.02 
0.02 

% correct pred/100 

0.95 
0.89 
0.83 
0.80 
0.95 
0.91 
0.95 
0.87 
0.95 
0.90 
0.96 

/>(j|0 

0.92 
0.78 
0.77 
0.84 
0.92 
0.71 
0.93 
0.76 
0.92 
0.65 
0.82 

" For each category, class 1 refers to members of that category and 

pounds contain more than one functional group of a particular 
type. 

Preprocessing of the spectra for the three linear discriminant 
classifier sets consisted of discarding peaks with intensity less 
than 1 % of the base peak and scaling the remaining peaks by 
taking the square root of their intensities, m/e values up to 166 
were utilized. The nature of the DLN classifier required 
peak/no peak binary coding of the spectra at 256 m/e values 
from m/e = 1 to 256. 

Because of the differences in the methods, the training sets 
used in developing the various classifiers were not identical. 
The linear discriminant classifiers were trained using 200 of 
the 1252 spectra, leaving 1052 patterns for testing. Necessarily, 
different training sets were used to train the classifiers for the 
various categories, so that the test sets for the various func­
tional group classifiers, though similar, were not strictly 
identical. However, identical test sets were employed for each 
of the three groups of linear discriminant classifiers. The DLN 
classifier required 128 training patterns, leaving 1124 test 
spectra. Here, since the whole classifier is trained as a unit, the 
test set was uniform for all categories. 

Results and Discussion 

Tables II-V summarize the evaluation results for the four 
sets of classifiers analyzed in this work. Scrutiny of these values 
reveals several important characteristics of the various eva­
luators. 

The limitations of percent correct prediction as an evaluator 
become apparent upon consideration, for example, of classifier 
1 as developed by the linear learning machine method with 
differing numbers of features (Tables II and IV). The percent 
correct predictions for these classifiers are 91 and 92%, re­
spectively. However, the actual performances are rather di­
vergent, as measured by the class conditional probabilities. The 
higher dimensioned weight vector (Table IV) performs with 
equal ability (92%) in classifying both class members and 

iing Machine Weight Vectors 

ilD 
,65 
.75 
.40 
,60 
,95 
,71 
,93 
.67 
,61 
,81 
,82 

P(n|2) 

0.96 
0.89 
0.90 
0.90 
0.87 
0.87 
0.86 
0.84 
0.79 
0.82 
0.94 

P(I |j) 

0.71 
0.21 
0.15 
0.34 
0.22 
0.10 
0.26 
0.15 
0.15 
0.10 
0.20 

P(2|n) 

0.94 
0.99 
0.97 
0.96 
0.998 
0.99 
0.995 
0.98 
0.97 
0.99 
0.997 

/(A,B), bits 

0.20 
0.06 
0.02 
0.07 
0.09 
0.02 
0.11 
0.04 
0.03 
0.03 
0.04 

M 

0.34 
0.25 
0.07 
0.18 
0.38 
0.18 
0.36 
0.14 
0.09 
0.19 
0.36 

, Using Same Features as Set 1 

/>(n|2) 

0.95 
0.90 
0.84 
0.79 
0.95 
0.91 
0.95 
0.87 
0.95 
0.91 
0,96 

MHJ) 

0.77 
0.23 
0.17 
0.26 
0.42 
0.15 
0.49 
0.21 
0.53 
0.16 
0.27 

P(2|n) 

0.99 
0.99 
0.99 
0.98 
0.997 
0.99 
0.996 
0.99 
0.99 
0.99 
0.997 

/(A,B). bits 

0.37 
0.06 
0.05 
0.09 
0.12 
0.03 
0.16 
0.06 
0.18 
0.03 
0.05 

M 

0.63 
0.27 
0.20 
0.23 
0.53 
0.23 
0.55 
0.23 
0.55 
0.20 
0.42 

lass 2 refers to nonmembers. 

nonmembers, while the weight vector with fewer components 
(Table II) correctly classifies only 65% of the class members. 
The percent correct prediction is actually the weighted average 
ofp(j | 1) and/>(n|2) and thus will always be nearer the class 
conditional probability for the more populous class. For a test 
involving several categories, class 2 (nonmembers) will gen­
erally be far more populous than class 1 (members) for any 
particular category of patterns. Another example of this dif­
ficulty is seen with classifier 3 as initially developed by the 
linear learning machine method (Table II) and as subsequently 
optimized by the simplex procedure (Table III). Although the 
performance of the classifier on class members [pG|l)] is 
dramatically improved by the optimization, the overall percent 
correct prediction figure is lower for the optimized weight 
vector as a result of a drop in performance on the more nu­
merous nonclass members. 

Use of the a posteriori probabilities p{\ |j) and p(2 |n) as 
evaluators is also likely to cause difficulty. According to these 
measures, classifier 1 as developed by the DLN method (Table 
V) has a likelihood of 78% of being correct if it predicts that 
a compound contains phenyl and a 99.5% likelihood of being 
correct if it predicts that the compound does not contain this 
functional group; these values seem reasonable enough. 
However, for classifier 11 in that same set, a posteriori 
probabilities of 100 and 99% are observed for class members 
and nonmembers, respectively. These values are placed in 
perspective by examination of the values for p(j | 1) and p(n 12) 
for classifier 11, which show that the classifier correctly assigns 
only 58% of the compounds actually containing - C = N . We 
see here a "conservative" classifier, which tends to classify 
patterns as nonmembers. All those patterns which it does 
classify as containing - C = N do indeed contain that moiety 
(hence, p( 1 |j) = 1.00), but this performance is at the expense 
of misclassifying 42% of the nitrile spectra presented to the 
classifier. Depending on the application, this kind of trade-off 
may or may not be acceptable. 
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Table IV. Performance Measures for Set 3, 60 Feature Linear Learning Machine Weight Vectors 

Category 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

p ( D a 

0.14 
0.04 
0.04 
0.08 
0.04 
0.02 
0.05 
0.04 
0.06 
0.02 
0.02 

% correct pred/100 

0.92 
0.91S 
0.84 
0.88 
0.92 
0.91 
0.93 
0.91 
0.94 
0.94 
0.97 

P(JlD 

0.92 
0.87 
0.77 
0.82 
0.90 
0.71 
0.91 
0.51 
0.95 
0.73 
0.88 

p(n |2) 

0.92 
0.96 
0.85 
0.89 
0.92 
0.92 
0.93 
0.93 
0.94 
0.95 
0.97 

P d l J ) 

0.65 
0.45 
0.18 
0.40 
0.31 
0.15 
0.43 
0.24 
0.51 
0.26 
0.31 

P(2|n) 

0.99 
0.99 
0.99 
0.98 
0.996 
0.99 
0.99 
0.98 
0.997 
0.99 
0.998 

/(A1B), bits 

0.32 
0.12 
0.05 
0.14 
0.10 
0.03 
0.14 
0.04 
0.18 
0.05 
0.06 

M 

0.53 
0.50 
0.21 
0.34 
0.42 
0.23 
0.49 
0.15 
0.57 
0.32 
0.49 

" For each category, class 1 refers to members of that category and class 2 refers to nonmembers. 

Table V. Performance Measures for Digital Learning Network Classifiers 

Category 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

p (D f l 

0.20 
0.08 
0.08 
0.15 
0.07 
0.04 
0.11 
0.10 
0.10 
0.04 
0.03 

% correct pred/100 

0.94 
0.95 
0.89 
0.86 
0.96 
0.93 
0.98 
0.90 
0.93 
0.95 
0.99 

P(JlD 

0.98 
0.55 
0.40 
0.66 
0.45 
0.20 
0.95 
0.35 
0.54 
0.48 
0.58 

P(n|2) 

0.93 
0.98 
0.93 
0.90 
0.99 
0.96 
0.98 
0.97 
0.97 
0.97 
1.00 

PdU) 

0.78 
0.68 
0.35 
0.53 
0.83 
0.17 
0.87 
0.54 
0.68 
0.47 
1.00 

P(2|n) 

0.995 
0.96 
0.95 
0.94 
0.96 
0.97 
0.99 
0.93 
0.95 
0.98 
0.99 

/(A,B), bits 

0.50 
0.12 
0.05 
0.15 
0.10 
0.01 
0.38 
0.07 
0.14 
0.06 
0.09 

M 

0.69 
0.31 
0.11 
0.24 
0.29 
0.04 
0.77 
0.14 
0.28 
0.23 
0.50 

" For each category, class 1 refers to members of that category and class 2 refers to nonmembers. 

The values of the a posteriori probabilities are highly de­
pendent on the composition of the data set used to test the 
classifiers. The more populous is class 1 (members) for any 
category, the more likely is an assignment to class 1 to be 
correct. Thus, comparison of the category 4 classifiers as de­
veloped by the linear learning machine (Table IV) and by the 
DLN method (Table V) shows that the linear discriminant 
classifier has higher performance [p(j| I)] for class members 
than does the DLN classifier. However, the a posteriori 
probability is higher for the DLN classifier. This seeming 
contradiction arises from the higher a priori probability of class 
1 membership in the DLN test set [p(l) = 0.15 compared with 
p(1) = 0.08 for the linear learning machine test set]. For the 
same reason, the values ofp(2|n) are uniformly high for all 44 
classifiers, with no values falling below 0.93. Thus, the a pos­
teriori probabilities are useful for comparative evaluations only 
if the test set a priori probabilities are the same for all classifiers 
being compared. Further, the a posteriori probabilities are 
indicative of predictive reliability in an absolute sense only if 
the composition of the test set is known to be representative of 
the universe of patterns to which the classifier will be applied 
in actual use. 

A perfect classifier would have p(j 11) =p(n|2) =p( l | j ) = 
p(2\n) = 1.00. Of course, automatic classifiers of this quality 
are rarely, if ever, available and, for most problems, there is 
reason to expect that such performance is not achievable. In 
a less-than-perfect classifier, one would usually (though not 
always) seek balanced performance on class members and 
nonmembers at the highest achievable level. One would like 
to have, therefore, an objective measure of classifier perfor­
mance with which to make comparisons among classifiers. The 
information gain /(A,B) discussed by Rotter and Varmuza was 
intended by those authors to meet this need.24 If one were se­
lecting, for example, a classifier for the presence of phenyl from 
among those in Tables III, IV, and V, a choice based on the 

class conditional probabilities would not be clear cut. The in­
formation gain /(A,B), however, indicates that the DLN 
classifier supplies rriore information than do the two linear 
discriminant classifiers. The figure of merit M gives the same 
ordering of these three classifiers. 

In the case of classifier 2, a limitation becomes apparent 
regarding the use of the information gain as an evaluator. Here, 
the linear learning machine derived weight vector (Table IV) 
shows the most balanced high performance of the three class 
2 classifiers (Tables III, IV, and V;, but the information gain 
of that classifier is ho larger than that of the DLN classifier. 
Because of differences in the a priori probabilities p(\) and 
p(2) in the test sets, the information gain for the DLN classifier 
is not strictly comparable with that of the other two classifiers. 
The same situation is observed with classifier 5 in Tables IV 
and V. This difficulty is met by the figure of merit, M, which 
is the ratio of the information gain to the maximum possible 
information gain imposed by the test conditions, as discussed 
above. Examination of the M values of the various classifiers 
shows that high M values are indicative of balanced high 
performance on both class members and nonmembers.32 

Summary 

Several measures of performance for automatic binary 
pattern classifiers have been applied to classifiers which were 
developed by various methods and tested using a large collec­
tion of mass spectra. The different evaluators do not always 
agree in their comparisons of classifiers. Of the various mea­
sures, the class conditional probabilities />(j 11) andp(n|2) and 
the figure of merit M, derived from the information gain, are 
well suited to selecting classifiers with balanced high perfor­
mance on class members and nonmembers. The a posteriori 
probabilities can be useful in a restricted way for reporting the 
reliability of a classifier's prediction, but these values are very 
sensitive to the composition of the test set. 
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We have refrained from value judgments such as "good" or 
"better than" in discussing both the classifiers and the evalu-
ators. The actual characteristics which make a classifier 
suitable for a particular application may depend on the ap­
plication itself, as, for example, when the penalty associated 
with misclassification of a class member is not the same as for 
misclassification of a nonmember.24 Although the percent 
correct prediction should probably be abandoned as a measure 
of the performance of binary classifiers, the other measures 
discussed can be useful in developing a total picture of relative 
and absolute classifier performance. 
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Abstract: Recent research on the use of adaptive networks of digital learning elements for chemical pattern recognition has 
stressed the high performance of such classifiers and their applicability to linearly inseparable data. In the present work, we 
apply a new performance measure, the figure of merit, and a large set of test data in a rigorous evaluation of the performance 
of digital learning networks. The results herein reported show that, when confronted with a large data set selected without par­
ticular consideration of the peculiarities of the network, the digital learning network continues to give good performance, al­
though this performance is substantially below the levels previously reported. A comparison of the performance of the digital 
learning network classifiers with that of a set of linear discriminant functions indicates similar levels of performance for the 
two types of classifier. 
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